FRGRealTime
Documentation for FRGRealTime.
Index
FRGRealTime.Coeffgamm2
FRGRealTime.Coeffgamm2Simple
FRGRealTime.Epi
FRGRealTime.F1All
FRGRealTime.F2All
FRGRealTime.PvdkF1Tildeps
FRGRealTime.VImSimple
FRGRealTime.VImintqs
FRGRealTime.VImintqsSimple
FRGRealTime.VImintqs_delta1
FRGRealTime.VReintqs
FRGRealTime.dkF1All
FRGRealTime.dkF1Allintqs
FRGRealTime.dkF1TildeintqsAll
FRGRealTime.dkF2All
FRGRealTime.dkF2Allintqs
FRGRealTime.dkF2TildeintqsAll
FRGRealTime.dkVIm
FRGRealTime.dkVImintqs
FRGRealTime.dkVReintqs
FRGRealTime.flowpm
FRGRealTime.flowpm_intcostheqs
FRGRealTime.flowpp
FRGRealTime.flowpp_intcostheqs
FRGRealTime.loopfunpm
FRGRealTime.loopfunpp
FRGRealTime.loopfunppfix
FRGRealTime.propImSimple
FRGRealTime.propImintqs_delta1_dq0_delta1
FRGRealTime.star1fun
FRGRealTime.star1funpm
FRGRealTime.star2fun
FRGRealTime.star2funpm
FRGRealTime.star3fun
FRGRealTime.star3funpm
FRGRealTime.star4fun
FRGRealTime.Coeffgamm2
— MethodCoeffgamm2(k, T, mfun::Spline1D)
The coefficient before the two point function flow.
FRGRealTime.Coeffgamm2Simple
— MethodCoeffgamm2Simple(k, T, m)
The coefficient before the two point function flow.
FRGRealTime.Epi
— MethodEpi(k,m)
compute $\sqrt{(x^2+m)}$
FRGRealTime.F1All
— MethodF1All(p0, ps, k, m, T)
$F_1$ is an odd function about $p_0$
when p0>0
,F1All=loopfunpp
when p0<0
,dkF1All=-loopfunpp(-p0)
F1All
doesn't contains the type-2 delta function
FRGRealTime.F2All
— MethodF2All(p0, ps, k, m, T)
$F_2$ is an odd function about $p_0$
when p0>0
,F2All=loopfunpm
when p0<0
,F2All=-loopfunpm(-p0)
FRGRealTime.PvdkF1Tildeps
— MethodPvdkF1Tildeps(p0, ps, qsmax, k, m, T; kwargs...)
Piecewise hints:
We only integrate the p0'
domain which the flowpp_intcostheqs
is non zero.
FRGRealTime.VImSimple
— MethodVImSimple(p0, ps, q0, k, m, T, Npi, lam4pik)
compute $\mathrm{Im}V_k(q_0)$, the k
dependence of $\lambda_{4\pi}$ and $m$ are neglected.
VImSimple
only contains $V(q_0)$, no $V(-q_0)$
VImSimple
contains type-1 delta function
VImSimple
doesn't contains type-2 delta function
FRGRealTime.VImintqs
— MethodVImintqs(p0, ps, k, T, Npi,UVScale,mfun::Function,lamfun::Function)
compute $\int_0^{k}dq_s qs^2\int_{-1}^{1}d\cos\theta \mathrm{Im}V(q_0,k)$. In our code, we perform integration over kprim
, q0
& qs
does not involved, so qs=k
, q0=Epi(k, mfun(k))
.
VImintqs
don't have any delta function contribution, we include the type-1 delta function in VImintqs_delta1
separately.
Arguments
mfun::Function
: $m^2(k)$, input from zero momentum resultlampifun::Function
: $\lambda_{4\pi}(k)$, input from zero momentum result.
FRGRealTime.VImintqsSimple
— MethodVImintqsSimple(p0, ps, k, T, Npi, m, lamda,UVScale)
compute $\int_0^kq_s^2dqs\int_{-1}^{1}d\cos\theta\mathrm{Im}V_k(q_0)$, the k
dependence of $\lambda_{4\pi}$ and $m$ are neglected.
VImintqsSimple
only contains $V(q_0)$, no $V(-q_0)$
VImintqsSimple
contains type-1 delta function
VImintqsSimple
doesn't contains type-2 delta function
FRGRealTime.VImintqs_delta1
— MethodVImintqs_delta1(p0, ps, k, T, Npi,IRScale,UVScale, mfun::Spline1D, lamfun::Spline1D)
compute type-1 delta function contribution in $\mathrm{Im}V_k$, we do the triple integral analytically.
FRGRealTime.VReintqs
— MethodVReintqs(p0, ps, k, T, Npi,IRScale,UVScale, mfun, lamfun)
compute $\int_0^{k}dq_s qs^2\int_{-1}^{1}d\cos\theta \mathrm{Re}V(q_0,k)$. In our code, we perform integration over kprim
, q0
& qs
does not involved, so qs=k
, q0=Epi(k, mfun(k))
.
VReintqs
contains type-1 and type-2 delta function.
Arguments
mfun::Function
: $m^2(k)$, input from zero momentum resultlampifun::Function
: $\lambda_{4\pi}(k)$, input from zero momentum result.
FRGRealTime.dkF1All
— FunctiondkF1All(p0, ps, k, m, T)
$F_1$ is an odd function about $p_0$
when p0>0
,dkF1All=flowpp
when p0<0
,dkF1All=-flowpp(-p0)
dkF1All
doesn't contains the type-2 delta function
FRGRealTime.dkF1Allintqs
— MethoddkF1Allintqs(p0, ps, qsmax, k, m, T)
$F_1$ is an odd function about $p_0$
when p0>0
,dkF1Allintqs=flowpp_intcostheqs
when p0<0
,dkF1Allintqs=-flowpp_intcostheqs(-p0)
dkF1Allintqs
doesn't contains the type-1 delta function
dkF1Allintqs
doesn't contains the type-2 delta function
FRGRealTime.dkF1TildeintqsAll
— MethoddkF1TildeintqsAll(p0, qsmax, k, m, T; kwargs...)
costh
is not integrated we need an extra 2
at somewhere
FRGRealTime.dkF2All
— MethoddkF2All(p0, ps, k, m, T)
$F_2$ is an odd function about $p_0$
when p0>0
,dkF2All=flowpm
when p0<0
,dkF2All=-flowpm(-p0)
FRGRealTime.dkF2Allintqs
— Methodflowpm(p0, ps, k, m, T)
$F_2$ is an odd function about $p_0$
when p0>0
,dkF2Allintqs=flowpm_intcostheqs
when p0<0
,dkF2Allintqs=-flowpm_intcostheqs(-p0)
FRGRealTime.dkF2TildeintqsAll
— MethoddkF2TildeintqsAll(p0, qsmax, k, m, T; kwargs...)
costh
is not integrated we need an extra 2
at somewhere
FRGRealTime.dkVIm
— MethoddkVIm(p0, ps, q0, k, m, T, Npi, lam4pik)
compute $\tilde{\partial_k}\mathrm{Im}V_k(q_0)$.
dkVIm
only contains $V(q_0)$, no $V(-q_0)$
dkVIm
contains type-1 delta function
dkVIm
doesn't contains type-2 delta function
FRGRealTime.dkVImintqs
— MethoddkVImintqs(p0, ps, q0, qsmax, k, m, T, Npi, lam4pik)
compute $\int_0^{qsmax}dq_s qs^2\int_{-1}^{1}d\cos\theta \tilde{\partial_k}\mathrm{Im}V(q_0)$.
dkVImintqs
only contains $V(q_0)$, for $-q_0$, we have $\int d\cos\theta V(q_0)=\int d\cos\theta V(-q_0)$, so we need an extra $2$ at somewhere.
dkVImintqs
doesn't have any delta function contribution, we include the type-1 delta function in VImintqs_delta1
separately.
Arguments
qsmax
: we integrate $q_s$ from $0$ to $k$,qsmax
will set tok
when we do the integration $dk'$, it should be distinguished from $k'$m
: mass square, it will be $m(k')$ when we do the integration $dk'$.lam4pik
: $\lambda_{4\pi}$, it will be $\lambda_{4\pi}(k')$ when we do the integration $dk'$ .
FRGRealTime.dkVReintqs
— MethoddkVReintqs(p0, ps, q0, qsmax, k, m, T, Npi, lam4pik)
compute $\int_0^{qsmax}dq_s qs^2\int_{-1}^{1}d\cos\theta \tilde{\partial_k}\mathrm{Re}V(q_0)$.
dkVImintqs
only contains $V(q_0)$, for $-q_0$, we have $\int d\cos\theta V(q_0)=\int d\cos\theta V(-q_0)$, so we need an extra $2$ at somewhere.
dkVReintqs
contains type-1 and type-2 delta function
Arguments
qsmax
: we integrate $q_s$ from $0$ to $k$,qsmax
will set tok
when we do the integration $dk'$, it should be distinguished from $k'$m
: mass square, it will be $m(k')$ when we do the integration $dk'$.lam4pik
: $\lambda_{4\pi}$, it will be $\lambda_{4\pi}(k')$ when we do the integration $dk'$ .
FRGRealTime.flowpm
— Methodflowpm(p0, ps, k, m, T)
compute $-\frac{1}{\pi}\tilde{\partial_k}\Im I_{2, k}(p)$
FRGRealTime.flowpm_intcostheqs
— Methodflowpm_intcostheqs(p0, ps, qsmax, k, m, T)
compute
\[\begin{aligned} &\int_0^{qsmax}\!\!dq_s q_s^2\int_{-1}^{1}\!\!d\cos\theta \tilde{\partial_k}F_2\left(\sqrt{p_s^2+q_s^2+2p_sq_s\cos\theta}\right)\\ &=\int_0^{qsmax}\!\!dq_s q_s^2\int_{-1}^{1}\!\!d\cos\theta \tilde{\partial_k}F_2\left(\sqrt{p_s^2+q_s^2-2*p_s*q_s\cos\theta}\right) \end{aligned}\]
FRGRealTime.flowpp
— Functionflowpp(p0, ps, k, m, T,δ=0.02)
compute $-\frac{1}{\pi}\tilde{\partial_k}\Im I_{1, k}(p)$
To be noticed that, flowpp
doesn't contains $\tilde{\partial_k}\mathcal{F}_4$, we will consider it separately.
At $p_0=2E_{\pi,k}$, flowpp
has a $\delta$ function contribution, we use a rectangle function with width $\delta$ to approximate.
FRGRealTime.flowpp_intcostheqs
— Methodflowpp_intcostheqs(p0, ps, qsmax, k, m, T)
compute
\[\begin{aligned} &\int_0^{qsmax}\!\!dq_s q_s^2\int_{-1}^{1}\!\!d\cos\theta \tilde{\partial_k}F_1\left(\sqrt{p_s^2+q_s^2+2*p_s*q_s\cos\theta}\right)\\ &=\int_0^{qsmax}\!\!dq_s q_s^2\int_{-1}^{1}\!\!d\cos\theta \tilde{\partial_k}F_1\left(\sqrt{p_s^2+q_s^2-2*p_s*q_s\cos\theta}\right) \end{aligned}\]
FRGRealTime.loopfunpm
— Methodloopfunpm(p0, ps, k, m, T)
compute $-\frac{1}{\pi}\Im I_{2, k}(p)$
FRGRealTime.loopfunpp
— Methodloopfunpp(p0, ps, k, m, T)
compute $-\frac{1}{\pi}\Im I_{2, k}(p)$, but without $\mathcal{F}_4$ contribution
FRGRealTime.loopfunppfix
— Functionloopfunppfix(p0, ps, k, m, T)
compute $-\frac{1}{\pi}\Im I_{1, k}(p)$
FRGRealTime.propImSimple
— MethodpropImSimple(p0, ps, T,IRScale,UVScale, Npi, m, lamda)
x[1]
is qs
, x[2]
is costh
, x[3]
is k
Arguments
m
: mass square, it's a constant number.lamda
: $\lambda_{4\pi}$, it's a constant number.
FRGRealTime.propImintqs_delta1_dq0_delta1
— MethodpropImintqs_delta1_dq0_delta(p0, ps, T, IRScale, UVScale, Npi, mfun, lamfun)
Compute the delta function part appears
FRGRealTime.star1fun
— Methodstar1fun(qp, qm, ps, m, T)
compute $-\frac{1}{\pi}\mathcal{F}_{1}\left(q_{+}, q_{-}, p, \bar{m}_{\pi, k}^{2}\right)$
FRGRealTime.star1funpm
— Methodstar1funpm(qp, qm, ps, m, T)
compute $-\frac{1}{\pi}\mathcal{F}_{1}^{\prime}\left(q_{+}, q_{-}, p, \bar{m}_{\pi, k}^{2}\right)$
Compared with $\mathcal{F}$, the $\mathcal{F'}$ has subtracted vacuum contributions. it will be used in $\mathrm{Im} I_2$
FRGRealTime.star2fun
— Methodstar2fun(qp, qm, ps, k, m, T)
compute $-\frac{1}{\pi}\mathcal{F}_{2}\left(q_{+}, q_{-}, k, p, \bar{m}_{\pi, k}^{2}\right)$
FRGRealTime.star2funpm
— Methodstar2funpm(qp, qm, ps, k, m, T)
compute $-\frac{1}{\pi}\mathcal{F}^{\prime}_{2}\left(q_{+}, q_{-}, k, p, \bar{m}_{\pi, k}^{2}\right)$
FRGRealTime.star3fun
— Methodstar3fun(qp, ps, k, m, T)
compute $-\frac{1}{\pi}\mathcal{F}_{3}\left(q_{+},k, p, \bar{m}_{\pi, k}^{2}\right)$
FRGRealTime.star3funpm
— Methodstar3funpm(qp, ps, k, m, T)
compute $-\frac{1}{\pi}\mathcal{F}^{\prime}_{3}\left(q_{+}, k, p, \bar{m}_{\pi, k}^{2}\right)$
FRGRealTime.star4fun
— Functionstar4fun(p0, p, k, m, T)
compute $-\frac{1}{\pi}\mathcal{F}_{4}\left(p_{0}, k, p, \bar{m}_{\pi, k}^{2}\right)$